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Abstract

An energy boundary element analysis (EBEA) formulation is presented for calculating sound radiation at
high frequency from a radiator with arbitrary shape. The EBEA development presented in this paper
compliments previous energy finite-element analysis (EFEA) developments for computing high-frequency
vibration of structures immersed in an acoustic medium. From the EFEA solution the structural
vibrational energy throughout the structure and the acoustic power radiated from each surface element in
contact with the surrounding fluid are computed. The EBEA utilizes the information for the acoustic power
radiated from each element of the outer surface of the structure as a boundary condition in order to
compute the acoustic field in an unbound medium with no damping that surrounds the radiating structure.
Since the structural vibration between different elements is considered as incoherent in the EFEA, the
acoustic intensity associated with each surface element that radiates in the surrounding medium is also
considered as incoherent between different elements in the EBEA formulation. The governing integral
equation of EBEA is established, and a numerical solution is presented. The present method is validated by
comparing EBEA results to analytical solutions and to numerical results from an axi-symmetric hp finite-
element code with infinite acoustic elements suitable for structural acoustic computations. Good correlation
is demonstrated for all the analyses.
r 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

A new energy boundary element analysis (EBEA) formulation for computing the noise radiated
from a vibrating structure at high frequencies is presented in this paper. The vibrational energy of
the structure is considered to be calculated by the energy finite-element analysis (EFEA) [1–7]. The
EFEA constitutes a recent development for computing high-frequency vibration and offers an
attractive alternative to the traditional statistical energy analysis (SEA) approach [8]. The
developments of the primary variables and of the main system of equations in SEA are based on a
modal approach, while the definitions of the primary variables and of the governing differential
equations in EFEA are based on a wave approach [3]. Both formulations are commonly employing
wave methods for estimating coupling loss factors (SEA) and power transfer coefficients (EFEA)
[9]. In SEA the primary variables are defined as the frequency averaged over a one-third octave
band energy stored in each group of similar modes. In EFEA the primary variables are comprised
by the space averaged over a wavelength and frequency averaged over a one-third octave band
energy density. Both methods can also compute the high-frequency acoustic field generated from the
structural vibration inside a dissipative, reverberant, and fully enclosed acoustic space. The interior
acoustic field is modelled by the SEA as a group of orthogonal incoherent interior acoustic normal
modes, and by the EFEA as an incoherent summation of a three-dimensional orthogonal basis of
waves. In both methods the amount of the structural vibrational energy converted into incoherent
acoustic intensity constitutes the boundary condition for the high-frequency acoustic analysis.
When an exterior acoustic medium is considered, the influence of the external fluid on the structural
vibration is accounted in both formulations through the effective mass effect and the radiation
damping. The radiation efficiency employed in the SEA and the EFEA vibration analyses
determines the amount of acoustic power radiated in the fluid from the structural vibration.
The total amount of the radiated acoustic power can be computed in SEA by summarizing the
acoustic power radiated in the fluid by all the structural subsystems in contact with the surrounding
acoustic medium. Similarly, in EFEA the total acoustic power can be determined by integrating the
acoustic intensity over all the structural elements which are in contact with the fluid. Both methods
can compute the total radiated power. However, neither one of the two methods is applicable for
computing the acoustic field generated at the specific field points around the structure since an
orthogonal modal basis or wave basis cannot be defined for the unbound medium. Also in both
SEA and EFEA, acoustic damping must be assigned to the acoustic medium; this is not the case in
the radiation solution considered in this paper. However, for field points which are far enough from
the radiator so that the radiating object can be approximated by a point source, the acoustic energy
and the acoustic intensity can be computed from the analytical equations of a single point source
located at the center of the radiating object and emitting acoustic power equal to the total acoustic
power emitted by the radiator.
The EBEA formulation presented in this paper is meant to utilize the results from the EFEA

computations in order to calculate the acoustic field radiated from a vibrating structure immersed
in an unbound acoustic medium without damping. From the structural EFEA analysis, the
acoustic power radiated from each structural element of the EFEA model in the surrounding fluid
is computed. Since the vibrational field in the EFEA is considered as reverberant, the vibrational
energy in the structural elements and the acoustic intensity radiated from the structural elements
in contact with the fluid are incoherent among different elements. The incoherent acoustic
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intensity on the interface between a structure and an acoustic cavity has been employed in the past
as a boundary condition in high-frequency SEA and EFEA interior acoustic computations [4,8].
Similarly, the incoherent acoustic intensities radiated in the unbound medium from each element
on the outer surface of a structure comprise the boundary conditions for the EBEA computations.
The concept of employing boundary elements for high-frequency analyses has been introduced in

the past [10–14]. In Refs. [10,14] a linear superposition principle and the Huygens Principle were
employed for deriving integral equations for the energy quantities of the wave fields inside a plate or
inside an acoustic enclosure. The energy field variables were considered as the superposition of the
direct field created by primary sources inside the domain and a diffracted field created by secondary
sources. The distributions of secondary sources on the boundary of the domain were computed first
using a collection approach which enforces a power balance on the boundary of the domain. Once
the strengths of the secondary sources were computed, the energy variables for the field were
evaluated based on boundary element integrals. An ensemble averaging operator was applied on the
integral equations in order to eliminate the interferences between the secondary sources. Numerical
simulations were performed for the vibrational energy of a pair of co-linear plates with different
flexural rigidities and for the acoustic field generated by a point inside an enclosure. In Ref. [11] an
indirect boundary element formulation was presented for a coupled high-frequency structural–
acoustic analysis. The energy finite element method for the structure and an acoustic energy
boundary element method for the interior acoustic space were combined in a coupled solution.
Acoustic energy sources were distributed on the surface of the acoustic cavity and expressions were
developed for linking the acoustic energy in the interior field with the surface acoustic energy
sources. Joint matrices were formulated between the structural energy variables and the acoustic
energy variables for developing a coupled structural–acoustic solution suitable for solving systems
of plates interacting with interior acoustic spaces. In Ref. [12] a boundary element method for high-
frequency acoustic analysis of interior acoustic spaces was presented. A collocation boundary
element approach was utilized for solving numerically the governing differential equations for the
acoustic energy density of an acoustic cavity. Finally, a direct boundary element formulation was
presented in Ref. [13] for the dynamic analysis of eleastic, homogeneous rods and beams subjected
to high-frequency harmonic loadings.
In the conventional boundary element method (BEM) for acoustic radiation [15–25] the acoustic

pressure and the acoustic velocity on the surface of the model comprise the primary variables. In
BEM the relative phase information between the primary variables is important for the solution,
and analyses are performed at distinct frequencies. The governing integral equation of the
conventional BEM provides the starting point for deriving the EBEA governing integral equation.
The phase dependent primary variables of the BEM formulation are converted into the incoherent
acoustic intensity boundary conditions by applying an ensemble averaging operator [10,14,26,27] on
the BEM integral equations. Since ensemble averaging is assumed as equivalent to frequency
averaging in high-frequency analysis [5,8,10,14,28–30], the EBEA governing integral equations for
the frequency averaged acoustic quantities are assumed to be equivalent for the equations that are
developed through ensemble averaging. A numerical solution to the EBEA governing integral
equation is obtained by distributing incoherent energy sources or sinks on the individual elements of
the EBEA model [10–12,14]. The acoustic power radiated from each element, computed by the
EFEA, constitutes the boundary conditions for the EBEA. The magnitudes of the energy sources
and sinks are computed from a set of equations stating that the combined effect of all the energy
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sources and sinks distributed on each element must satisfy the prescribed intensity boundary
conditions on the surface of the radiator. This approach is similar to the source panel method [31] in
potential flows where a distribution of flow sources or sinks is placed on the surface of an object and
their strengths are evaluated by satisfying a set of known normal velocity boundary conditions. It is
also similar to the EBEA methods presented for interior acoustic calculations in Ref. [10–12,14].
However, the purpose of the EBEA presented in this paper is to calculate the frequency averaged
acoustic energy density and the frequency averaged acoustic intensity in the exterior acoustic
domain without dissipation at high frequency, when the incoherent frequency averaged normal
acoustic intensity on the surface of the radiator is evaluated from an EFEA analysis. For field points
that are not far enough from the radiating structure in order to approximate the radiator as a single
point source, the EBEA provides better results. Since the EBEA does not capture phase information
the number of elements is not dictated by the frequency of analysis as in the conventional BEM,
thus the number of required elements does not increase with frequency. However, the EBEA is only
meaningful at high frequencies where the phase information can be neglected since the acoustic field
is considered as incoherent. The boundary conditions in the EBEA are defined in terms of surface
intensity while either a pressure, a velocity, an impedance, or a mixed boundary condition is defined
in the BEM. Finally, the EBEA does not present any singularities associated with irregular
frequencies as it happens in the traditional BEM.
In Section 2, the integral equations for the EBEA are established. The corresponding Green

functions are obtained from these integral formulas. The numerical implementation of the EBEA is
derived in Section 3. A discussion on how a second order singularity is avoided during the
evaluation of the integrals of the diagonal terms in the numerical implementation is presented.
Finally, the reason that a non-uniqueness issue is not present in the EBEA formulation is also
discussed. The validity of the EBEA formulation and its numerical implementation is demonstrated
in Section 4 by comparing EBEA results to analytical solutions for exterior radiation in an unbound
acoustic medium without dissipation, and by comparing EBEA results to numerical solutions
obtained from a very dense axi-symmetric, hp finite-element model, with infinite acoustic
elements [32].

2. Theoretical formulation

Two energy quantities are computed in the EBEA formulation, the frequency-averaged acoustic
energy density, and the frequency-averaged acoustic intensity. The basic assumption in deriving
the EBEA formulation is that the energy sources on each element are incoherent among different
elements [10,11,14]. This assumption is in-line with the existing high-frequency SEA and EFEA
formulations, and it is also necessary in order to utilize the incoherent acoustic power computed
by the EFEA analysis on the outer part of a structure as a boundary condition for predicting the
radiated acoustic field [33].

2.1. Characteristics of incoherent sources

Considering two elementary sources with the complex strength amplitudes of Ai and Aj;
respectively, the source cross-spectral density (CSD), which is used to express the interdependence
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relationship between these two sources, is [14,26,27]

GijðoÞ ¼ E½A�
i ðoÞAjðoÞ�; ð1Þ

where o is the circular frequency, the notation E½�� denotes the ensemble averaging and ( )�

indicates the conjugate of a complex number. The ensemble averaging operator E½�� is introduced
as

E½AiðoÞA�
j ðoÞ� ¼

jAiðoÞj2; i ¼ j;

0; iaj:

(
ð2Þ

Then, the coherence function between source amplitudes can be defined similar to Ref. [27]:

g2ijðoÞ ¼
jGijðoÞj2

GiiðoÞGjjðoÞ
; ð3Þ

where 0pg2ijp1 and GiiðoÞ and GijðoÞ are, respectively, the auto- and CSD functions of the source.
The matrix g2ij represents the coherence between sources. For incoherent sources, the coherence
matrix becomes the identity matrix and the cross terms are zero, or

g2ij ¼
1; i ¼ j;

0; iaj:

(
ð4Þ

In the high-frequency methods the frequency averaging is considered as equivalent with the
ensemble averaging [5,8,14,28–30] since the variation in the wavelengths induced by the
differences in frequency is equivalent to the variation in the sources at a single frequency.
Therefore, the ensemble averaged acoustic quantities developed by applying the operator E[ � ] to
the boundary element integral equations are equivalent to acoustic quantities that are frequency
averaged over a one-third octave band which is the typical frequency averaging range in SEA and
EFEA applications.

2.2. Integral equations for the EBEA

The EBEA formulation is developed from the integral formulas for the acoustic pressure
or velocity of the conventional BEM. First, the time averaged over a period acoustic
energy density at a field point Y is expressed in terms of the acoustic velocity and the acoustic
pressure as [11,34]

eYh i ¼
1

4
r#vY � #v�Y þ

1

rc2
#pY #p�Y

� �
; ð5Þ

where r is the density of the acoustic medium, c is the speed of the sound in the medium, #v

and #p are the acoustic velocity and the acoustic pressure, respectively, hi indicates time
averaging over a period (i.e., Ah i ¼ ð1=TÞ

R tþT

t
AðtÞ dt), and symbol ^ indicates

complex quantities. The time averaged over a period acoustic intensity can also be written as
[11,34]

IYh i ¼ 1
2
Reð #pY #v

�
Y Þ: ð6Þ
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In order to develop the primary variables of the EBEA, the ensemble averaging operator [14,27]
is applied to the equations for /eYS and /IYS resulting in

*eY ¼ E½ eYh i� ¼
1

4
rE½#vY � #v�Y � þ

1

rc2
E½ #pY #p�Y �

� �
ð7Þ

and

*IY ¼ E½ IYh i� ¼ 1
2
ReðE½ #pY #v�Y �Þ; ð8Þ

since the ensemble averaging in the high-frequency methods is considered as equivalent to
frequency averaging, *eY and *IY represent the time averaged over a period and frequency averaged
over one-third octave band energy density and intensity at a field point Y.
In the conventional indirect boundary integral method, the acoustic pressure at any field point

Y exterior to the structure is expressed as [15,16]

#pY ¼
Z

S

AðPÞgðP;Y Þ dS; ð9Þ

where S is the surface of the structure, P denotes the point located on the surface S; AðPÞ is the
complex source strength amplitude at P, and gðP;Y Þ ¼ e�ikr=ð4prÞ is the Green function for three-
dimensional infinite system, r is the distance between points P and Y, and k is the wave number.
The same Green’s function has been utilized in previous EBEA formulations presented for
interior acoustics [10–12,14] and it originates from the conventional BEA formulations for
acoustics [18]. The acoustical velocity vector can be obtained from the acoustic pressure

#vY ¼ �
1

ior
r #pY ¼ �

1

ior

Z
S

ArgðP;Y Þ dS; ð10Þ

where

rgðP;Y Þ ¼ �
1

4pr2
ð1þ ikrÞe�ikrEr; ð11Þ

and where Er denotes the unit vector from P to Y.
Eqs. (9) and (10) are employed for developing expressions for the ensemble averaged quantities

E½ #pY #p�Y �; E½#vY � #v�Y � and E½ #pY #v�Y �: The latter expressions are introduced in Eqs. (7) and (8) in order
to develop the equations for the primary variables of the EBEA formulation. The acoustic
pressure square is calculated as

#pY #p�Y ¼
Z

S

AðP0ÞgðP0;Y Þ dS

Z
S

A�ðP00Þg�ðP00;Y Þ dS

¼
Z

S

Z
S

AðP0ÞA�ðP00ÞgðP0;Y Þg�ðP00;Y Þ dS0 dS00: ð12Þ

By applying the ensemble averaging on both sides of the above equation results in

E½ #pY #p�Y � ¼
Z

S

Z
S

E½AðP0ÞA�ðP00ÞgðP0;Y Þg�ðP00;Y Þ� dS0 dS00: ð13Þ
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Since the Green functions gðP0;Y Þ and gðP00;Y Þ are deterministic variables, Eq. (13) reduces to

E½ #pY #p�Y � ¼
Z

S

Z
S

E½AðP0ÞA�ðP00Þ�gðP0;Y Þg�ðP00;Y Þ dS0 dS00: ð14Þ

According to Eq. (2), for incoherent sources, E½AðP0ÞA�ðP00Þ� is non-zero only for P0 ¼ P00:
Thus, only the terms due to the same point (P,P) are retained in the integral equations, resulting in

E½ #pY #p�Y � ¼
Z

S

mðPÞjAðPÞj2jgðP;Y Þj2 dS: ð15Þ

In Eq. (15) the double integral is reduced to a single integral due to the zero cross terms in
E½AðP0ÞA�ðP00Þ�: This approach was introduced in Ref. [14] for reducing the double integrals of the
secondary sources to single integrals at the boundary, under the assumption that the interferences
between secondary sources are neglected. The variable mðPÞ appears in the equation in order to
retain the proper units during the reduction from a double to a single integral, and mðPÞ is equal
with the differential area associated with the location P of the integration.
Following a similar process for E½#vY � #v�Y � and E½ #pY #v

�
Y � results in

E½#vY � #v�Y � ¼
1

o2r2

Z
S

mðPÞjAðPÞj2jrgðP;Y Þj2 dS ð16Þ

and

E½ #pY #v�Y � ¼
1

ior

Z
S

mðPÞjAðPÞj2gðP;Y Þrg�ðP;Y Þ dS: ð17Þ

Substituting Eqs. (15) and (16) into Eq. (7), results in

*eY ¼
1

4

1

ro2

Z
S

mðPÞjAðPÞj2
1

16p2r4
þ

k2

16p2r2

� �
dS þ

1

rc2

Z
S

mðPÞjAðPÞj2
1

16p2r2
dS

� �
: ð18Þ

Using the relationship c ¼ o=k [9,35] reduces Eq. (18) to

*eY ¼
1

r2o2

Z
S

mðPÞjAðPÞj2
r

64p2r4
þ

k2r
32p2r2

� �
dS: ð19Þ

Similarly, substituting Eq. (17) into Eq. (8), results in

*IY ¼
1

r2o2

Z
S

mðPÞjAðPÞj2
k2rc

32p2r2
Er dS: ð20Þ

In Eqs. (19) and (20), the term 1=r2o2 is a frequency-dependent term. The strength density of an
energy source or sink can be defined as the product between the frequency-dependent term and
the term mðPÞjAðPÞj2:

sðPÞ ¼
mðPÞ
r2o2

jAðPÞj2; ð21Þ

where sðPÞ denotes the strength density of the energy source placed at point P of the surface of
the model. Acoustic energy sources are used in Refs. [10,14] to define the distribution of the
secondary sources on the boundary of an acoustic cavity in order to capture the total field
generated due to an excitation from primary sources inside the cavity. They are also used in
Ref. [11] in order to create the coupling between a structure and the interior acoustic response.
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In this paper they are utilized for solving a different problem, namely computing the radiated
noise in an unbound acoustic medium without damping once the radiated acoustic intensity from
a source immersed into fluid is known from an EFEA analysis [33]. Thus, Eqs. (19) and (20)
can be written in their final form as

*eY ¼
Z

S

sðPÞ
r

64p2r4
þ

k2r
32p2r2

� �
dS ð22Þ

and

*IY ¼
Z

S

sðPÞ
k2rc

32p2r2
Er dS: ð23Þ

Eqs. (22) and (23) constitute the basic integral equations of the EBEA formulation.

3. Numerical implementation

The EBEA numerical formulation for the time and frequency-averaged acoustic energy density
and intensity in the radiated field (Eqs. (22) and (23)) is developed by placing a continuous
distribution of incoherent infinitesimal energy sources on the surface of the radiator similar to
Refs. [10–12,14].

3.1. Numerical system of equations

The surface S of the radiator (Fig. 1) is divided into n quadrilateral or triangular elements.
Incoherent energy sources or sinks are distributed on every element. In this work, the source strength
density sj ðj ¼ 1; 2;y; nÞ on each element is considered to be constant, similar to a traditional
collocation boundary element approach in acoustics [15]. Eqs. (22) and (23) can be rewritten in the
discrete form by considering sðPÞ as constant over each element ‘‘j’’ and equal to sj:

*eY ¼
Xn

j¼1

sj

Z
Sj

Gðn;YÞ dS

" #
; *IY ¼

Xn

j¼1

sj

Z
Sj

Hðn;YÞ dS

" #
; ð24; 25Þ
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where

Gðn;YÞ ¼
r

64p2r4ðn;YÞ
þ

k2r
32p2r2ðn;YÞ

and

Hðn;YÞ ¼
k2rc

32p2r2ðn;YÞ
Er

are the Green functions for the time and frequency-averaged acoustic energy density and intensity in
the free field, respectively, Sj indicates the surface of element j as shown in Fig. 1, and n is an
arbitrary point on the element j: Since the source strength density sj is constant on each element, it
can be factored outside the integral.
In order to develop the numerical system of equations that will allow to compute the values of

the sources and sinks sj over the model, the field point Y is placed on an element q on the outer
surface of the radiator and Eq. (25) provides the integral equation for the intensity *IY on the
element q: In order to avoid the singular integration within the element q in Eq. (25) the physical
interpretation of the integral

R
Sq
Hðn;YÞ dS is considered. This integral represents the acoustic

intensity on element q generated by the source of element q itself. In order to avoid the
computation of the singular integration the corresponding intensity is evaluated as half of the
power of the element source divided by the element area. The averaged acoustic power radiated by
element q itself is expressed as

Pq ¼ sqAq

k2rc

8p
; ð26Þ

where sq is the source strength density on the element, and Aq is the area of element q:Half of this
power is radiated from each side of the element, therefore the contribution from the element itself
to the acoustic intensity at point Y located on element q is determined by

*Iq ¼ sq

k2rc

16p
nq; ð27Þ

where nq is the outward unit normal vector of the element. Thus, Eq. (25) can be rewritten as

*IY ¼
Xn

j¼1;jaq

sj

Z
Sj

Hðn;YÞ dS

" #
þ sq

k2rc

16p
nq: ð28Þ

Since the radiated acoustic power from each element comprises the prescribed boundary
condition, the time and frequency-averaged intensity on an element integrated over the area of the
element must result into the prescribed radiated acoustic power:Z

si

*IY � ni dS ¼ %Pi; i ¼ 1; 2;yn; ð29Þ

where %Pi is the prescribed radiated power from element i; and ni is the normal (outward of the
structure) vector of the element i: Substituting Eq. (28) in Eq. (29) results in

%Pi ¼
Z

Si

Xn

j¼1;jai

sj

Z
Sj

Hðn;gÞ � ni dS

" #
þ si

k2rc

16p

( )
dS; i ¼ 1; 2;y; n; ð30Þ
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where g and n are the arbitrary points in the elements i and j; respectively. By factoring outside the
integral the strength of the energy sources or sinks distributed over each element, Eq. (30) is
rewritten as

%Pi ¼
Xn

j¼1;jai

sj

Z
Si

Z
Sj

Hðn; gÞ � ni dS

" #
dS

( )
þ siAi

k2rc

16p
; i ¼ 1; 2;y; n; ð31Þ

where Ai is the area of the element i: Eq. (31) is written in the matrix form as

½K �fsg ¼ fPg; ð32Þ

where fPgn�1 ¼ %P1 %P2 y %Pn

� T
is the vector of prescribed boundary conditions, fsgn�1 ¼

fs1 s2 y sng
T is vector of the unknown variables and each term Kij of the matrix [K ] is derived as

Kij ¼

R
Si

R
Sj
Hðn;gÞ � ni dS

h i
dS; iaj;

Ai
k2rc

16p
; i ¼ j:

8><
>: ð33Þ

The values of the acoustic energy sources or sinks are obtained by solving Eq. (32). Then by
employing Eqs. (24) and (25), the time and frequency-averaged acoustic energy density and
intensity can be determined at any field point within the acoustic medium exterior to the structure.

3.2. Numerical calculation

Eq. (32) is solved numerically. When i is not equal to j; the system matrix coefficient Kij is
calculated by a Gaussian quadrature as

Kij ¼
Xng

k¼1

Xng

l¼1

Xng

m¼1

Xng

n¼1

jJm;njHðxm;n; Zk;lÞ � nijJk;l jWmWnWkWl

� �( )
; ð34Þ

where ng is the number of the Gaussian integration points for one-dimensional integral, xm;n and
Zk;l are the locations of the integration points on elements i and j; respectively, jJm;nj and jJk;l j are
the determinants at the integration points of elements i and j; respectively, Wm; Wn; Wk and Wl

are the weighting factors for one-dimensional Gaussian integration. Similarly, the numerical
formulas corresponding to Eqs. (24) and (25) are

*eY ¼
Xn

j¼1

sj

Xng

k¼1

Xng

l¼1

Gðxk;l ;YÞjJk;l jWkWl

� �( )
: ð35Þ

and

*IY ¼
Xn

j¼1

sj

Xng

k¼1

Xng

l¼1

Hðxk;l ;YÞ Jk;l

�� ��WkWl

� �( )
: ð36Þ

Once the distribution of sj is computed from Eq. (32), *eY and *IY are computed numerically at any
field point from Eqs. (35) and (36).
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3.3. Existence and uniqueness problems in the solution

A major drawback in the classical BEM formulation for exterior acoustic radiation and
scattering (based on the acoustic pressure and the acoustic velocity on the surface of the model) is
that for a discrete set of wave numbers or frequencies (known as irregular frequencies or fictitious
frequencies) the solution to the BEM integral equations either does not exist or is not unique [25].
Such an issue does not arise in EBEA. The homogeneous equation corresponding to the EBEA
primary system of equations is

½K �fsg ¼ f0g: ð37Þ

Along with Eq. (33), it can be observed that the wave number square can be factored out from all
the terms and it can be eliminated from the above homogeneous equation. Thus, only the trivial
solution can be extracted from the homogeneous equation for non-zero wave numbers. Therefore,
the solution of the EBEA is existent and unique for any frequency.

4. Validation of EBEA

In order to demonstrate the validity of the EBEA formulation and its implementation, EBEA
results are compared successfully for several analyses to analytical solutions and to numerical
results generated by an axi-symmetric hp finite-element code with infinite acoustic finite elements.
The convergence of the EBEA formulation is also verified.

4.1. Comparison of EBEA with analytical solutions for radiation in an unbounded medium

In order to develop an analytical solution, incoherent point sources are positioned within a
radiator. In the analytical solution the surface of the radiator is considered as transparent and the
acoustic energy density and acoustic intensity are computed in the field. The normal acoustic
intensity on the elements of the transparent surface is also calculated by the analytical solution.
The latter comprise the boundary conditions for the EBEA computations. A distribution of
acoustic energy sources is evaluated by the EBEA on the surface of the radiator from the intensity
boundary conditions which originate from the analytical solution. The surface results of the
EBEA computations are employed for calculating the acoustic energy density and the acoustic
intensity in the field. Since the incoherent acoustic intensity boundary conditions are the same on
the surface of the radiator, both in the analytical solution and the EBEA analysis, it is expected
that the field results should correlate between the two methods.
In the analytical solution the expressions for the frequency-averaged acoustic energy density

and intensity at any point either on the transparent surface of the radiator, or in the field are,
respectively:

*eY ¼
Xm

i¼1

%si
r

64p2r4i
þ

k2r
32p2r2i

� �� �
; ð38Þ

*IY ¼
Xm

i¼1

%si
k2rc

32p2r2i
Ei

� �
; ð39Þ
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where m is the number of incoherent point sources that generate the analytical solution, %si is the
strength of the ith point source, ri is the distance between the ith point source and the field point and
Ei indicates the unit vector from the ith point source to the field point. The acoustic power that passes
through each element of the transparent surface of the radiator produced by the incoherent point
sources is calculated as

%Pi ¼
Z

Si

Xm

j¼1

%sj

k2rc

32p2r2j
Ej � ni

" #( )
dS; i ¼ 1; 2;y; n; ð40Þ

where ni is the unit normal (outward of the structure) vector of element i: In Eqs. (38)–(40) the
contribution from each source is added on an energy basis since the individual point sources that
create the analytical solution are considered as incoherent with each other.
Results from a cylindrical radiator are compared for three configurations. First, the analytical

solution by three incoherent sources located along the axis of the cylinder are developed and
compared to the EBEA result. Then, the results from three incoherent sources randomly located
off the axis of the cylinder are compared to the EBEA result. Finally, results of the EBEA with
different number of elements are compared in order to demonstrate the convergence of the EBEA
formulation. The acoustic medium used in the example is water, with density of 1000.0 kg/m3, and
speed of sound equal to 1500.0m/s. Computations are performed at the center frequency for the
3000Hz, one-third octave band.

4.1.1. Point sources located along the axis of the cylinder

The geometry of a cylindrical radiator with two end caps is utilized. The radius of the cylinder is
0.5m, and the length of the cylinder is 10.0m. The two end caps have the same radius of 0.5m. The
EBEA model for the cylinder is comprised by 376 elements and 378 nodes, and is depicted in Fig. 2.
The analytical solution is generated by placing three incoherent point sources of unit strength along
the axis of the cylinder (Fig. 3c). The acoustic energy density and the acoustic intensity at any field
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Fig. 2. EBEA model for the cylindrical structure with 376 elements.
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Fig. 3. Distribution of the acoustic energy density (dB, ref. 1e-12) in the field for three incoherent sources located along

the axis of the cylinder: (a) the EBEA result, (b) the analytical solution and (c) the sketch of the incoherent sources

located along the axis of the cylinder.
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point in space are computed analytically using Eqs. (38) and (39), respectively, with m ¼ 3: The
acoustic normal intensity on each element of the cylindrical surface produced by the three sources is
calculated from the analytical solution (Eq. (40)), and constitutes the boundary conditions for the
EBEA analysis. The strengths of the acoustic energy sources distributed over the surface of the
cylindrical radiator are calculated by the EBEA and used in the field computations. The contours of
the acoustic energy density in the field computed by the EBEA and by the analytical solution are
depicted in Fig. 3(a) and (b), respectively. The vector distributions of the acoustic intensity in the field
obtained from the EBEA and from the analytical method appear in Fig. 4(a) and (b), respectively.
The analytical and the EBEA results correlate very well for both the far field and near field. The
EBEA captures the symmetric characteristics of the near field response properly.

4.1.2. Point sources located off the axis of the cylinder

The same cylindrical radiator is analyzed again, but this time the three incoherent sources are
placed off the axis of the cylinder as depicted in Fig. 5c. The analytical solutions for the acoustic
energy density and the acoustic intensity in the field are computed using Eqs. (38) and (39),
respectively, with m ¼ 3: The boundary conditions for the EBEA analysis are calculated by
Eq. (40). The contours of the acoustic energy density in the field computed by the EBEA and by the
analytical solution are depicted in Fig. 5(a) and (b), respectively. The vector distributions of the
acoustic intensity in the field obtained from the EBEA and from the analytical method appear in
Fig. 6(a) and (b), respectively. Again, when the incoherent sources are located off the axis of the
cylinder, the analytical and the EBEA results correlate very well. The EBEA captures correctly
the characteristics of the acoustic field in the vicinity of the radiator. In order to demonstrate the
difference between the EBEA compared with modelling the radiator as a single point source with
power equal to the total power of all the incoherent sources, a single point source located at the
center of the cylinder is used to approximate the cylindrical radiator. The strength of this single
point source is determined by equating the total radiated acoustic power to that from the three point
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Fig. 4. Distribution of the acoustic intensity vector in the field for three incoherent sources located along the axis of the

cylinder: (a) the EBEA result and (b) the analytical solution.
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sources used in the example. Acoustic energy densities at field points placed 1m apart along a line
defined in Fig. 5c are presented in Fig. 7 for comparison. As expected, for field points several
diameters away from the cylinder both the EBEA and the single point source approximation give
almost the same results. However, in the vicinity of the radiator, the EBEA provides much better
correlation with the analytical solution than the single source approximation.
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Fig. 5. Distribution of the acoustic energy density (dB, ref. 1e-12) in the field for three incoherent sources placed off the

axis of the cylinder: (a) the EBEA result, (b) the analytical solution and (c) the sketch of the incoherent sources located

off the axis of the cylinder.

A. Wang et al. / Journal of Sound and Vibration 278 (2004) 413–436 427



ARTICLE IN PRESS

Fig. 6. Distribution of the acoustic intensity vector in the field for three incoherent sources placed off the axis of the

cylinder: (a) the EBEA result and (b) the analytical solution.
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4.1.3. Convergence of the EBEA formulations
In order to verify the convergence of the EBEA formulation, the same cylindrical radiator is

discretized by different number of boundary elements. The results corresponding to the three
incoherent sources placed along the axis of the cylinder are used to compare the results from the
models comprised by different number of elements. Three models with different element densities
are used, the original model presented in Fig. 2, a model with more elements (1437 elements and
1439 nodes) is presented in Fig. 8, and a model with less elements (92 elements and 94 nodes) is
presented in Fig. 9.
The acoustic energy density and the magnitude of the acoustic intensity at field points placed at

various distances from the center of the cylinder within the X�Y plane are presented in Figs. 10
and 11, respectively. Overall, good correlation is observed between the analytical solution and the
EBEA results for both the acoustic energy density and the acoustic intensity magnitude in the
field. It can be observed that the correlation can be improved and the EBEA results converge to
the analytical solution as the number of elements in the model increases.
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Fig. 9. EBEA model of the cylindrical structure with 92 elements.

Fig. 8. EBEA model of the cylindrical structure with 1437 elements.
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4.2. Comparison between EBEA and infinite finite elements for radiation analysis

In this validation an axi-symmetric hp finite-element code with infinite acoustic finite elements
(SONAX) [32] is utilized. SONAX can model both a vibrating structure and the acoustic radiation
in the surrounding medium. SONAX is used for generating the normal acoustic intensity boundary
conditions for the EBEA analysis, and for computing acoustic results in the field. The latter are used
as a basis for comparison with the EBEA results. The vibration and the corresponding acoustic
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Fig. 14. Mesh of the cylinder with end-caps for the EBEA model.
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Fig. 13. Mesh of the cylinder with end-caps for the SONAX model.

A. Wang et al. / Journal of Sound and Vibration 278 (2004) 413–436 431



radiation from an axi-symmetric structure are analyzed in this validation. Analyses are performed
within an intermediate frequency range where both solutions (SONAX and EBEA) are expected to
be valid. A cylindrical structure depicted in Fig. 12 is analyzed. The radius of the cylinder is
R ¼ 0:3m, while the length is L ¼ 6:0m, and the thickness is equal to 0.005m. The two spherical
end-caps have the same radius r ¼ 0:3m, and thickness of 0.005m. The material properties of the
structure are: Young’s modulus E ¼ 2:0� 1011 Pa, Poisson’s ratio n ¼ 0:28; density rs ¼ 7800:0 kg/
m3, damping factor Zs ¼ 0:02: The exterior acoustic medium is water (rf ¼ 1000:0 kg/m3,
c ¼ 1500:0m/s). The SONAX finite-element model for the structure and the surrounding medium
are depicted in Fig. 13. A large number of finite elements are used in the axi-symmetric model in
order for the results to be valid at a high-frequency range for a meaningful comparison with the
EBEA. A ring force of unit strength is applied at z ¼ 1:0m on the structure and SONAX is used for
calculating the surface vibration, the surface acoustic pressure, and the farfield acoustic pressure.
Analyses are performed at 5Hz intervals within the 1600 and 2000Hz one-third octave frequency
bands and all of the SONAX results are frequency-averaged within each band. The surface
vibration and the surface acoustic pressure are employed for calculating the frequency-averaged
acoustic normal intensity on the surface of the cylinder. The latter is employed for defining the
boundary conditions for the EBEA analysis. The results for the farfield frequency-averaged acoustic
intensity computed by SONAX and by the EBEA are compared. The EBEA model employed in the
computations is depicted in Fig. 14.
The equations utilized for processing the SONAX results in order to generate the boundary

conditions for the EBEA analysis are presented. The complex acoustic pressure and normal
displacement (outward of the cylinder) on the surface of the structure are computed by SONAX
at each node of the axi-symmetric finite-element model and for each frequency of analysis:

#p ¼ pr þ ipi; #dn ¼ dn
r þ idn

i ; ð41; 42Þ

where pr and pi represent the real and imaginary parts of the complex acoustic pressure
respectively, and dn

r and dn
i are the real and imaginary parts of the complex normal displacement.

Considering harmonic vibration, the normal acoustic velocity on the surface of the structure can
be written as [9,35]

vn ¼
d

dt
ðdnÞ ¼ ðodn

i � iodn
r Þe

�iot or #vn ¼ odn
i � iodn

r : ð43Þ

According to Eq. (6), the time-averaged normal acoustic intensity on the surface of the cylinder
and at each node of the axi-symmetric model is equal to

Ih in¼
1
2
oðprd

n
i � pid

n
r Þ: ð44Þ

The results for the time-averaged normal acoustic intensity are processed in order to generate the
appropriate intensity boundary conditions for the EBEA analyses. First, the results from Eq. (44)
are frequency-averaged over the one-third octave band where analyses are performed. Since the
elements in the SONAX model are considerably smaller than the elements in the EBEA model,
the time and frequency-averaged normal acoustic intensity from SONAX is further integrated
over each EBEA element. These integrated values on every EBEA element define the boundary
conditions for the EBEA analyses. The farfield acoustic pressure #pR0

is also computed by
SONAX. By considering a plane wave assumption for the farfield acoustic response the
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magnitude of the corresponding time-averaged acoustic intensity is equal to

Ih iR0
¼

j #pR0
j2

2rc
: ð45Þ

In order to compare the time-averaged acoustic intensity computed by SONAX in the far field
with the EBEA results, the acoustic intensity from Eq. (45) is frequency-averaged over the two
one-third octave bands where analyses are performed.
In the EBEA analysis, the time and frequency-averaged normal acoustic intensity evaluated on

the surface of the EBEA model from the SONAX results comprises the boundary conditions. The
distribution of the acoustic energy sources on the surface of the EBEA model is computed first
and then the time and frequency-averaged acoustic energy density and intensity in the field are
evaluated from Eqs. (24) and (25). Results in the far field are computed by both methods for a
radius R0 ¼ 1000m, and for multiple polar angles. Results for the magnitude of the acoustic
intensity (dB) calculated by SONAX and by the EBEA for 1600 and 2000Hz one-third octave
bands are depicted in Figs. 15 and 16, respectively. The horizontal axis represents the polar angle
y (degree) as defined in Fig. 12. Good correlation is observed in the results. Variation of the
acoustic intensity with respect to the polar angle is not present in the EBEA results due to
the space averaging that is performed in order to generate the EBEA boundary conditions from
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Fig. 15. Time and frequency-averaged farfield acoustic intensity magnitude (dB, ref. 1e-12) at R0 ¼ 1000m with the

central frequency of 1600Hz: - - - - -, EBEA; ——, the analytical solution.
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the SONAX results, and due to the consideration of the distributed energy sources as incoherent
in the EBEA formulation.

5. Conclusions

An energy boundary element analysis (EBEA) formulation for acoustic radiation in an
unbound fluid with no dissipation and its numerical implementation are presented. The EBEA
can be employed for calculating the acoustic field generated at high frequency from a radiator on
which incoherent intensity boundary conditions are defined. In practical applications the intensity
boundary conditions originate from an EFEA analysis which computes the structural vibration of
a structure surrounding by a fluid and the corresponding radiated power [33]. The EBEA
presented in this paper completes a void exhibited by the high-frequency methods of SEA and
EFEA in modelling radiation in an unbound medium. The SEA and the EFEA can model
enclosed acoustic spaces but they require definition of damping properties and the existence of an
orthogonal modal or wave basis (i.e., assumption of reverberant field) for modelling an acoustic
space. Thus, neither method is suitable for modelling radiation in an unbound medium. Previous
EBEA formulations concentrated in solving interior acoustic applications where damping is
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Fig. 16. Time and frequency-averaged farfield acoustic intensity magnitude (dB, ref. 1e-12) at R0 ¼ 1000m with the

central frequency of 2000Hz: - - - -, EBEA; ——, the analytical solution.
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considered for the acoustic meidum. The EBEA presented in this paper does not require to define
damping properties for the infinite fluid and no assumptions are made about representing the
unbounded acoustic medium as reverberant. Good correlation is demonstrated between the
EBEA results and analytical or infinite finite element solutions for several analyses of acoustic
radiation. The EBEA computes better results for the acoustic field in the vicinity of the radiator
compared to a simplified and approximate solution produced by a single source placed at the
center of the radiator and with power equal to the total power of the radiator.
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